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Abstract 
Multi-access edge computing (MEC) represents an emerging solution to address 

the issues related to reliability, availability, context awareness and low latency in 
modern and future mobile networks. Despite the great interest and effort on 
developing MEC solutions, few works are available in the literature to model the 
existing trade-offs between available resources and related performance of MEC 
nodes. This paper aims to provide a methodology to fill this gap by proposing a 
measurement-based approach to derive an effective model for MEC nodes, capable of 
capturing the existing trade-offs among different performance parameters. A network 
emulator is used to generate the data to define the model. The paper provides an 
overview of the different tradeoffs and an analysis of the performance of a single MEC 
node under CPU and networking limitations. 
  



I. Introduction 
Multi-Access Edge Computing, commonly referred to as MEC, is acknowledged as a 
fundamental component of next-generation mobile networks. It introduces 
computation capabilities at the edge of the wireless access network, enabling new and 
challenging Use Cases. One of the most interesting benefits of introducing edge nodes 
in the network fabric is related to their capability of supporting low latency, 
high reliability, and context awareness, thus improving the effectiveness of the 
deployment and improving the performance of modern and future services [1]. 
The term MEC identifies also the standardized, open environment defined by the 
related ETSI Industry Specification Group (ISG). ETSI defined a framework for 
application developers and content providers, the MEC enablement platform 
[ref], in which the Edge node offers cloud-computing capabilities and an IT services 
deployment environment. The edge node hosts a virtualization platform where 
applications may be deployed as containers or VMs. Deployments are dynamic and 
are orchestrated by a central entity as needed. Mechanisms for traffic steering of the 
data flow towards the Edge are envisioned but details are not defined in the ETSI 
standard. The ongoing efforts are maintained harmonized with 3GPP standardization 
work in a joint effort between the two SDOs. In 5G the steering functionality is 
commonly implemented by an instance of the User Plane Function (UPF) deployed at 
the Edge. The UPF is the Network Function responsible in the 5G Core for selectively 
breaking the GTP tunnel and steering the data flow, in this case, to the Edge Data 
Network (DN). The UPF itself can be deployed as a Virtual Network Function in the 
Edge Cloud.  
Edge nodes can be geographically distributed at different density degrees. Deployment 
architectures may include networks in various data center locations, as well as smaller 
and more pervasive nodes that may be subject to severe constraints in terms of costs 
and computational capability. It is realistic to think that services providers would face 
in the future a quite heterogeneous landscape of multi-access edge computing (MEC) 
nodes (depending on how ”deep” or dense is the Edge). 
In the last years, several initiatives and projects focused on developing proofs-of-
concept in line with ETSI standards definitions have been carried on1. However, better 
understanding and modeling the edge nodes’ behavior is required in order 
to enable proper management and optimization of service deployment. This would 
require a step further with respect to the current state-of-the-art. 
Indeed, when we consider the heterogeneity, dynamicity, and constraints of the cloud 
edge continuum, it is evident that a ”one size fits all” approach is not feasible and that 
finding the better deployment cannot be a trivial task. The MEC performance depends 
on the availability of computing resources, which are often limited depending on how, 

 
1 https://mecwiki.etsi.org/index.php?title=MEC Ecosystem  



and which type of, nodes are deployed. For MEC systems to be sustainable and 
manageable, service providers will need to adopt suitable models that would allow 
them to dimension and provision their MEC nodes on the network fabric and to 
understand how to enable them to support the applications and the related KPIs. In 
this framework, orchestration of the network functions and services plays a central 
role in the optimization of the available resources. 
In the literature, several works propose various orchestration techniques which are 
based on theoretical models for Edge Nodes behavior. Some previous works provide 
good preliminary approaches to compare different orchestration techniques in 
constrained cloud-edge scenarios. Harutyunyan et al. [2] leverage simple delay models 
to characterise the VNF processing delay which is then used to allocate CPU resources 
by imposing end-to-end (E2E) QoS constraint on the considered services in the 
scenario. More complex models are considered for the same objective in [3] and [4] 
using respectively M/M/1 and M/D/1 queuing models. However, those models, while 
enabling interesting preliminary evaluations, are not precise enough in modeling the 
behavior of real edge nodes running real services. To fill this gap, some authors started 
considering introducing experimental measurements in their models. A good example 
can be found in [5], where authors conducted experiments in a real setup and 
collected data useful to derive a model of the virtualization overhead. This model was 
then adopted for defining a VNF placement algorithm. The drawback of this approach, 
however, was its high dependency on the virtualization technology used during 
experimentation. In [6] the authors leverage experimental results to derive a 
theoretical model relating the CPU usage, network load and packet delay and edge 
node performance. In this case, the resulting model is tailored to a specific face 
recognition scenario. The coexistence and parallel execution of the face recognition 
application in conjunction with other heterogeneous services were not considered as 
well as the impact of user plane (UP) function behaviors. Both these works give an 
idea of the behavior of an application in a constrained scenario, but the findings are 
context-specific and cannot be easily generalized. In [7], the authors introduce a 
simulator of the Simu5G 5G Core simulator combined with physical edge hosts to 
evaluate and experiment MEC technologies. In this approach, the E2E 5G network is 
simulated by design and does not allow to emulate a MEC, which includes the 
virtualised functions for the UP termination - the user plane function (UPF). In [8], the 
authors propose OpenLEON as an E2E emulator spanning from mobile users to the 
edge data center. This is, to the best of our knowledge, one of the closest works to 
the one presented in this paper. The authors leverage srsLTE and Containernet to 
design a realistic radio access implementation with a virtualised environment 
emulating a 3-tier edge data center hosting the core network and services. Various 
applications are tested, with the main focus to analyse network performance in various 
LTE channel configurations. 



The goal of this paper is to enable the definition of a measurement-based model for 
studying MEC and MEC-supported application performance and existing tradeoffs. To 
this aim, we define a measurement campaign by using a network emulator, capable 
of controlling the amount of resources allocated for the MEC nodes. Based on such 
measurements, it is possible to define different “acceptable” operating regions 
outlining the existing trade-offs, e.g. between computing and network performance. 
In contrast to [8], our work focuses on the edge side, and it aims to study the 
deployment of several isolated and resource-constrained MEC hosts and to analyze 
the corresponding performance tradeoffs. For this reason, we selected a network 
emulation environment, ComNetsEmu [9], which allows deploying containerised 
applications on top of emulated physical hosts through a Docker-in-Docker approach. 
This provides more flexibility and allows to effectively emulate MEC hosts with limited 
computing resources that are shared between the hosted virtualised applications and 
functions by using Docker provisioning interfaces. 
The code developed to deploy the emulation environment and to study MEC 
performance described in this paper is freely available online2 to facilitate the 
reproduction of the achieved results and to support further research activities on this 
subject.  

 
2 https://github.com/RiccardoFedrizzi/networking letter 



II. The Proposed Methodology 
To study the performance of the applications deployed at the Edge and enabled by 
the MEC system, we designed a 5G-enabled resource-constrained MEC deployment on 
an emulation environment based on Open Source platforms. 
Comnetsemu is seletected as the simulation platform, being capable of extending 
Mininet and Containernet with a nested virtualization approach based on DockerHosts. 
On top of the Comnetsemu network emulator UERANSIM and Open5GS are deployed 
to implement the 5G System, plus some software utilities to collect data and generate 
variable traffic and CPU load. The resulting architecture of the resulting emulator 
environment is represented in Figure 1(a). ComNetsEmu enables to deploy an SDN-
enabled transport network connecting various hosts emulating the main components 
of the 5G network: the radio access network, the 5G control plane (CP), and the MECs. 
The scenario deployed for the performance evaluation is explained in this section and 
detailed in Figure 1(b). 
Proper tools have been implemented to control the scenario and to easily deploy the 
network, configure the radio access network (RAN) and the 5G core (5GC), and apply 
the desired applications (APPs) behaviors. Those tools implement functions to collect 
the status of the various network components (e.g.: container CPU status through the 
Docker stats exposed through the Docker Client APIs). In parallel to that, APP tools 
have been implemented to emulate services running on the MECs and consumed by 
APP clients of the user equipments (UEs). Collection of the measurements is performed 
using the Publish/Subscribe (Pub/Sub) infrastructure provided by Redis3. In the 
remainder of this section, the building blocks of the system and their functionalities 
are described into more detail. 
 

 
Fig. 1 (a) High-level architecture of the emulation environment. 

  



II.A. Emulated Network Deployment 
A proper deployment of the 5G System should be supported by a proper environment 
integrating both software defined network (SDN) and network function virtualization 
(NFV). Indeed, Comnetsemu environment natively supports both SDN and NFV 
through a docker−in−docker framework. All the network functions and applications 
are deployed within DockerHosts as resource isolated hosts. In Figure 1(a) they are 
shown in solid-line boxes.Within a DockerHost, APPs and network functions can be 
emulated by either running processes directly, or by deploying APPContainers 
exploiting the docker−in−docker concept - see blue boxes and dashed line boxes in 
Figure 1(a), respectively. APPContainers add a second level of virtualization and allow 
to emulate containerized applications and network functions running on a resource 
limited host. 
Since by default Docker does not apply CPU limitations, we used Docker built-in 
functions to limit CPU utilization for specific MEC Docker containers. To control the 
CPU allocation we set two parameters: the CPU period, CPUperiod, and the CPU quota, 
CPUquota. CPU quota specifies how much CPU time (in microseconds) the container 
can use, per CPU period. After a container consumes all its CPU quota, it is throttled 
for the remainder of the CPU period. 
To ease this process we implemented a utility function whereby the CPU constraints 
of MEC can be set, which uses the cpu perc parameter to set the maximum percentage 
of the overall system CPU that can be used by all the APPs and the UPF deployed in 
the specified MEC. 
 

 
Fig. 1 (b) Emulation components and their integration. 

  



II.B. 5G Core Network 
The Open Source implementation from the Open5GS project3 is used to deploy the 
5GC. This solution allows separating the CP and the UP functions, thus supporting 
the need to have a Data Network in each MEC to reach the APPs. To the best of 
knowledge of the authors, such implementation of the 5GC allows to emulate a 
realistic MEC environment with a proper, while avoiding monolithic core network 
deployment as in [8]. 
During the deployment phase, all the CP functions are started as processes inside a 
DockerHost, for simplicity. Their configuration is done through YAML files which are 
updated on the fly based on the desired scenario. In particular, the session 
management function (SMF) configuration specifies where to reach the UPFs, their 
Data Network Name (DNN) and the associated sub-network. Afterwards, an 
APPContainer running the UPF is deployed in each MEC node and configured to 
associate a new TUN interface, created on the fly and usually called ogstun, with a 
DNN and its subnetwork.  
Two different logical networks are created to allow reaching the APPs, depending on 
whether the service is provided through the MEC platform (MEC in Figure 1(b)) or 
through the cloud (CLD in Figure 1(b)). The corresponding two networks are displayed 
in green and orange, respectively, in Figure 1(b). Then, the CP needs to be configured 
with the subscribers’ information (International Mobile Subscriber 
Identity - IMSI, subscribed services, etc.) to allow a new UEs to connect. 
 

II.C. 5G Radio Access 
UERANSIM4, an open source software simulator for the 5G UE and RAN (gNodeB 
(gNB)), is used to simulate the radio access section of the 5G System. UERANSIM 
implements the main Radio Resource Control (RRC) procedures and the GTP protocol 
for the user plane. It allows easing the deployment of an E2E 5G network in a self-
contained emulation environment. 
Being a simulator, UERANSIM does not implement the protocol stack below the RRC, 
preventing the emulation of scenarios in which lower layers are needed - however this 
aspect is beyond the scope of this paper. To avoid such limitation, it would be 
necessary either to use a physical RAN implementation (e.g., srsRAN), which requires 
rather costly external hardware and complicates the scenario definition, or more 
advanced network simulators (e.g., NS3), which typically do not support the required 
accuracy that an emulation environment might provide in terms of a realistic 
implementation of the UPF in the MEC and the corresponding workload. Both options 

 
3 https://open5gs.org 
4 https://github.com/aligungr/UERANSIM 



are possible in the Comnetsemu environment, but the authors prefer to focus on a 
fully integrated and consistent scenario capable of running on a single common PC 
platform, as previously described. 
During the deployment phase, the gNB is deployed as a process in the RAN 
DockerHost. Once the gNB process is started, it establishes an NG Application Protocol 
(NGAP) connection with the access & mobility management function (AMF) network 
function in the 5GC. To add and connect new UEs in the scenario can be easily 
automated thanks to dedicated control tools that have been implemented by the 
authors, which starts an UE and connects it by specifying a DNN, used to discriminate 
between MECs, and a slice type, used to specify the corresponding QoS parameters. 
Every time a UE connection is started, a new TUN interface is created which allows to 
use of the 5G connection and reach the MEC APPs as shown in Figure 1(b). The IP 
address of the TUN interface is assigned by the SMF within the range of the DNN sub-
network. 
Each UE can have several active connections, with different DNN and slice types. The 
IP addresses of an UE can be retrieved based on the triplet [ID,DNN, SST]. 
 

II.D. Emulated Applications 
With the purpose to maintain generality while enabling a proper analysis of the MEC 
performance, we decided to classify applications into three categories: communication 
intensive applications, communication intensive applications and mixed applications. 
Indeed, most MEC applications expected to fall either in the communication intensive 
category (i.e. requiring mainly a given throughput level, or offering a quality of service 
directly related to the achievable throughput level), communication intensive (i.e. 
requiring mainly CPU resources and performing mostly computation), or something in 
the middle (i.e. having multiple mixed KPIs). Indeed, the UPF used to steer the traffic 
to the MEC platform can be hosted and use resources from the platform itself, thus 
representing a clear example of a communication intensive service. To emulate the 
above application profiles, control utility functions have been implemented in the 
emulator in order to (i) control the data traffic between an UE and an APP, and (ii) 
emulate the APP computation by generating CPU load in its APPContainer. 
In the next sections and overall in this paper, we will assume that each MEC node 
resources should be shared among all the applications and functionalities running in 
such node (i.e. including the UPF and other ”core” functionalities). The authors believe 
that this represents a more realistic situation of MEC deployment. However, the 
designed emulator is capable of supporting also other scenarios and enable different 
isolation of CPU or network resources. 
Data traffic generation: Traffic generation is performed by using the Iperf network 
testing tool. Tests were performed by establishing a connection between an Iperf 



server instance running on each APP and listening on the ogstun TUN interface of the 
MEC, and the Iperf client on the EU side, which generates traffic towards the APP. A 
helper class has been defined to ease the traffic generation, which allows to select a 
specific slice, the protocol to use (TCP or UDP), the port, uplink/downlink traffic 
generation, the bit-rate to generate (in Mbps) and its duration. 
CPU load generation: To generate static or dynamic CPU load of an APP, we 
leverage the multiprocessing package to generate artificial CPU load by running one 
process for each online CPU core of the DockerHost hosting the APP. The amount of 
generated load is controlled by monitoring the container’s CPU usage (using the psutil 
package) and regulating the rate of the artificial calculations to meet the CPU load 
requested. Since the psutil package returns the CPU load of the system, a re-scaling 
considering the resources allocated to the DockerHost is performed. 
 
II.E. Monitoring 
To monitor the scenario and collect results we implemented a Monitor class, which 
continuously oversees the data traffic and the CPU load monitoring. 
After its instantiation, the Monitor class can be used to start/stop the monitoring of 
the throughput as well as the CPU of the desired hosts and applications. In the 
following, we explain more in detail how those monitors are implemented. 
Data traffic monitoring: Throughput measures are collected for the overall traffic 
handled by a MEC as well as for each established Iperf session of the APPs. In the 
former case, a process is deployed in each MEC node (i.e. its container) and listens 
on a dedicated Redis channel. Upon the reception of the activation message, this 
process sends the overall throughput measured on the ogstun interface directly to the 
Redis database. 
CPU Monitoring: Several tools are available for CPU monitoring (e.g.: Glances5). 
However, since most of them leverage psutil, they incur the issue to disregard the 
containers’ CPU constraints that are emulated (as previously explained). For this 
reason, we preferred to follow a lower level approach and leverage the Docker Client 
APIs to retrieve the container CPU load through the Docker stats. To realise this, the 
class Monitor() implements a utility function which starts the CPU monitor for a specific 
container. Every time this function is invoked, a separate thread is started, which 
collects and tracks the container CPU status. 
It is worth noticing that while measuring a MEC node we want to obtain its overall 
CPU usage. Conversely, measuring an APP CPU usage, the aim is to obtain its CPU 
usage over its hosting MEC node. For this reason, the measured CPU load of an APP 
is re-scaled with respect to the CPU resources allocated to its parent container. 

 
5 https://nicolargo.github.io/glances/ 



III. Experimental Results 
The environment used for the emulation consists of a VM with 2 CPU allocated on a 
standard laptop with 8 x Intel Core i7-8665U CPU @ 1.90GHz with 16 GB RAM. To 
calibrate our emulated environment with real hardware we use the Passmark tool 
providing the CPU mark, a CPU performance measure. Figure 2(a) illustrates how to 
tune the MEC node resources to the desired value. For example, if we want to tune 
the MEC performance to be comparable with a RaspPi Model 3, then around 37% of 
one CPU should be allocated, while three RasPis can be achieved with roughly 90% of 
one CPU allocated. 

 
Fig. 2 (a) Performance comparison between DockerHost and RasPi Model 3. 

 
Scenario 1: To test whether the system is working as expected and to understand 
the system’s limitations, in this scenario, one UPF and one APP are deployed in MEC 
to emulate CPU load. Both applications exchange data traffic with one UE. Results are 
provided in Figure 2(b) where six zones are highlighted, corresponding to different 
operational setups of the system: (1) CP configuration, (2) UE deployment, (3) the 
APP is instructed to use 80% of the MEC CPU resources, (4) MEC container is forced 
to use a maximum of 37.5% of its allocated resources, (5) the UE generates from 40 
to 70 Mbps of data traffic, with 1 full CPU allocated to the MEC node, (6) same as (5) 
but MEC resources are set to 37.5%. The corresponding throughput degradation 
starting from 50 Mbps of offered traffic clearly outlines the effect of the resources 
limitation. 
 



 
Fig. 2 (b) Performance evaluation in a dynamic operating scenario. 

 
A more comprehensive performance evaluation under heavy traffic is shown in Figure 
2(c) where we compare the throughput handled by the MEC with its CPU usage under 
different MEC resource constraints. As shown before, we can observe that when the 
MEC CPU resources are bounded to 100 and 70%, we reach the system limit as the 
throughput falls between 70 and 80 Mbps (the maximum level supported with a single 
CPU). Conversely, when the MEC CPU resources are bounded to 37.5 and 20% the 
throughput is limited by the scarcity of available MEC resources. 
 

 
Fig. 2 (c) Throughput vs CPU load for variable resource availability. 

 
Scenario 2: To study the impact of communication and computational intensive APPs, 
we deploy in MEC the UPF, an APP1 handling 40 Mbps of data traffic generated by 



one UE, and APP2 using from 0 to 90% of the MEC computing resources. We can 
observe from Fig 3(a) that, when 100% of the CPU is allocated to the MEC, the level 
of CPU usage of APP2 does not impact on the achieved throughput. Conversely, with 
20% of available CPU resources, we observe relevant a throughput decrease as soon 
as APP2 starts computing tasks. 

 
 

 
Fig. 3. Performance evaluation of a MEC hosting one throughput-intensive APP 
coexisting with a CPU-intensive APP. 



 
This trade-off between CPU and data rate defines two different areas of the resulting 
diagrams (Fig. 3 (top) and Fig. 3 (bottom)): the area under the curve related to a 
specific scenario (and corresponding resource limitations) represents the possible 
operating points and tradeoffs achievable by the system, while the rest of the diagram 
cannot be achieved due to resource starvation.  



IV. Conclusions 
In this work, we proposed an environment to analyze MEC performance in an E2E 5G 
System.  
The framework has been implemented to deploy the network and flexibly perform the 
experiments, using well-known open source software and sample dockerised 
applications to emulate a generic application handling data traffic and performing 
computing tasks. Results demonstrate that we can effectively emulate resource 
constrained MEC nodes and study APPs performance under high data rate and CPU 
usage. 
Such characterization of the MEC performance tradeoffs will enable to (1) dimension 
the MEC node resources depending on the expected operating scenarios and related 
applications KPIs, and (2) properly allocate or migrate services and maintain the 
desidered KPIs. Both scenarios will be subject of further work on the topic. 
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